Skip to main content


Bayesian Regression for Group Testing Data

Abstract: Group testing involves pooling individual specimens (e.g., blood, urine, swabs, etc.) and testing the pools for the presence of a disease. When individual covariate information is available (e.g., age, gender, number of sexual partners, etc.), a common goal is to relate an individual's true disease status to the covariates in a regression model. Estimating this relationship is a nonstandard problem in group testing because true individual statuses are not observed and all testing responses (on pools and on individuals) are subject to misclassification arising from assay error. Previous regression methods for group testing data can be inefficient because they are restricted to using only initial pool responses and/or they make potentially unrealistic assumptions regarding the assay accuracy probabilities. To overcome these limitations, we propose a general Bayesian regression framework for modeling group testing data. The novelty of our approach is that it can be easily implemented with data from any group testing protocol. Furthermore, our approach will simultaneously estimate assay accuracy probabilities (along with the covariate effects) and can even be applied in screening situations where multiple assays are used. We apply our methods to group testing data collected in Iowa as part of statewide screening efforts for chlamydia.

MDS 220
Type of Event (for grouping events):

Statistics Tutoring Center


The Statistics Tutoring Center (TC) provides free tutoring for students enrolled in STA 210 and STA 296. The tutors are graduate students in statistics who are currently teaching or assisting in these classes. 

The TC offers both online and in-person hours.  The in-person hours are in the Multidisciplinary Science Center (MDS) 333. The online hours are in a Canvas conference (Big Blue Button) in a dedicated Canvas shell.

Subscribe to statistics